Всего новостей: 2320597, выбрано 2 за 0.003 с.

Новости. Обзор СМИ  Рубрикатор поиска + личные списки

?
?
?  
главное   даты  № 

Добавлено за Сортировать по дате публикации  | источнику  | номеру 

отмечено 0 новостей:
Избранное
Списков нет
Блинов Дмитрий в отраслях: ТранспортСМИ, ИТвсе
Блинов Дмитрий в отраслях: ТранспортСМИ, ИТвсе
Россия > СМИ, ИТ > forbes.ru, 20 июня 2017 > № 2215856 Дмитрий Блинов

Искусственный интеллект санирует бизнес: кому и зачем нужны решения по поиску «слабых звеньев» в компании

Дмитрий Блинов

Технический директор компании LogistiX

Мы живем во время хаотичной автоматизации бизнеса. Как технологии машинного обучения могут упорядочить этот процесс?

Сегодня искусственный интеллект применяется в совершенно разных сферах, включая реализацию потребностей бизнеса (обучение, медицина, сфера обслуживания), однако отдельных решений, призванных настроить анализ сквозных показателей, оценивающих работу нескольких отделов и их взаимосвязь (в том числе, неявную) – фактически нет.

Самый близкий аналог ИТ-решения подобного плана– это программы бизнес-аналитики, или BI-системы, но они прежде всего нацелены на конструирование отчетов и моделей с использованием инструментария промежуточного семантического слоя, требуя внимания высококвалифицированных специалистов для своей настройки и развития. Методология их внедрения часто подразумевает длительную настройку и ввод в эксплуатацию, которая подчас переходит за все разумные границы. Ситуация, когда при запуске BI-системы в промышленную эксплуатацию уже имеется объемный список дополнительных «хотелок» — это, скорее, правило, чем исключение. Тем не менее, фрагментарно – в рамках каждого отдела – всегда существует своя система показателей, и одной из важнейших задач сквозной системы анализа является связывание таких частных индикаторов через понятные, прозрачные алгоритмы и формулы.

Искусственному интеллекту не нужны формулы и алгоритмы – в этом есть его серьезное преимущество перед классическими системами. Он может достаточно легко, базируясь лишь на статистике, выполнять мониторинг показателей и индикаторов, определяя неявные связи и зависимости, влияющие на работу целой компании. ИИ может выступать как приложением и дополнением к BI-системам, так и работать самостоятельно, интегрируясь в любую корпоративную информационную систему на уровне выходных данных. Он может взять на себя не только функцию анализа, но и прогнозирования будущих проблем и даже санации бизнеса.

Если говорить о параллелях, то для бизнеса до сих пор нет решения на базе AI аналогичного IBM Watson в медицине, когда сканируется весь организм, и выявляются неочевидные факторы, влияющие на здоровье. Или же инструментов, похожих на ИИ-программы кредитного скоринга, оценивающие потенциального кредитора по неочевидным факторам, просчитывая риски банка.

Признаем, что мы живем во время хаотичной автоматизации бизнеса, которая чаще всего идет по двум сценариям: предельная централизация ИТ-решений в компании, и предельная их децентрализация.

Первый сценарий предполагает, что бизнес выбирает глобальное ИТ-решение для учета и контроля всех процессов, но в большинстве случаев полученное в результате внедрения решение неповоротливо, негибко, и дорого обходится компании на уровне стоимости владения. Чаще всего, решение о централизованной автоматизации принимается на самом высоком уровне с целью получить максимальную отдачу – «ведь это одна платформа и лучшие практики, работающие в одном информационном пространстве». Обычно, впоследствии вокруг такого продукта появляется множество систем-сателлитов, решающих часть задач.

Централизованное решение может внедряться компанией по разным причинам: кто- то хочет увеличить капитализацию бизнеса, внедряя известные ИТ-продукты от мировых гигантов и повышая привлекательность в глазах инвесторов и акционеров. Кто-то хочет решить проблему разобщенности бизнес-процессов. Однако, на сегодняшний день нет ни одного централизованного решения, которое позволяло бы полнофункционально автоматизировать конкретные бизнес-процессы и задачи, как это получается при использовании отдельно взятых, специализированных продуктов. Кроме того, рано или поздно в компании появляется понимание, что единый продукт или платформа вовсе не означает единую систему отчетов и показателей, на базе которых можно было бы принимать взвешенные решения.

Работая по второму сценарию, компания выбирает целый ряд небольших отраслевых решений (например, автоматизация склада, бухгалтерия и т.д.), которые внедряются последовательно («исторически»), обычно плохо или сложно между собой скоординированы, дублируют функционал друг друга, и не могут дать собственнику бизнеса однозначной и полной картины происходящего. На выходе – «карточный домик» из разных систем управления и учета, где достаточно тронуть одну из частей, и он рискует развалиться. Такая картина характерна для компаний, работающих в производственном секторе. Происходит чаще всего так: ставится система управления торговлей, система управления производством, PDM-система, MES-система, WMS для склада (компания автора, LogistiX, предоставляет решения в сфере автоматизации склада — Forbes), вводятся единые стандарты технологической документации. На определенном этапе, компания «выравнивает» процессы и связь между системами, и получает работоспособную ИТ-инфраструктуру. Однако, имея разные системы, рано или поздно возникает вопрос их связи на уровне подсистемы анализа данных, чтобы иметь возможность оценивать работу нескольких отделов сразу. Вот здесь и возникает большой (и часто совершенно нерентабельный) проект разработки универсальной отчетности и сквозных показателей.

Оба сценария приводят к возникновению потребности в дополнительной системе отчетности или продукте для анализа и прогнозирования значений показателей, но при этом мало где можно найти «лучшие практики», которые помогли бы предприятию, активно развивающемуся в условиях высококонкурентного рынка. Особенность заключается в том, что именно в попытке обогнать конкурентов формируются уникальные особенности бизнес-процессов, которые трансформируются в конкурентные преимущества.

Тем не менее, в определенный момент времени руководство понимает, что реакция на идентификацию проблемы, поиск причины и ее устранение занимают слишком много времени и требуют вовлечения множества разнопрофильных специалистов. На некоторых предприятиях этим занимаются целые команды, образованные внутри каждого подразделения или отдела, обеспечивая должный уровень гибкости и эффективности.

Тот период, когда наличие проблемы уже понятно для руководства, но рабочие команды её не осознали («К пуговицам и рукавам же претензий нет..?»), является самым важным: капитан видит в бинокль скалу, и может сбавить скорость и поменять курс, пока та не оказалась слишком близко. В данном случае очень важно иметь тот самый «бинокль», роль которого часто выполняет какая-либо система отчетности, KPI, BI-подсистема, либо некое аналитическое приложение. «Скалами» же являются изначально неизвестные внешние и внутренние факторы: конкретные реализации процессов и их исполнители, поставщики и клиенты, и другие, порой очень неявные, и непредусмотренные в имеющемся инструментарии для ситуационного анализа. Теперь представьте, что у «бинокля» есть множество сменных трафаретов, меняя которые можно определить препятствие: скала, земля, айсберг... Примерно так и работает большинство аналитических подсистем. Универсальных трафаретов нет, и компании вынуждены проходить свой путь проб и ошибок, чтобы их сформировать, и выдать управленцам готовые шаблоны для оценки ситуации.

На мой взгляд, технологии искусственного интеллекта открывают перед бизнесом огромные преимущества по формированию экспертных систем нового поколения: обучение одной такой системы для конкретного предприятия позволяет не только получить своевременную реакцию на изменение условий, но и получить сведения о влиянии на тот или иной результат совершенно разнородных факторов.

Россия > СМИ, ИТ > forbes.ru, 20 июня 2017 > № 2215856 Дмитрий Блинов


Россия > Транспорт. СМИ, ИТ > forbes.ru, 20 апреля 2017 > № 2146729 Дмитрий Блинов

Робот на разборке: почему склад без людей сегодня на самом деле никому не нужен

Дмитрий Блинов

Технический директор компании LogistiX

Искусственный интеллект уже помогает распределять нагрузки на сотрудников склада равномерно и, например, выявлять брак. Достаточно ли этого?

Повальная роботизация сегодня воспринимается как панацея от всех болезней. Причем термин «роботизация» настолько широк, что под ним можно понимать как автоматизированные линии на складе, так и «сверхмашины» с искусственным интеллектом (AI), например IBM Watson. Применительно к логистике та же путаница. Поэтому стоять прояснить, что может означать «робот-кладовщик» или «робот-директор склада» и почему склад без людей еще очень долго не станет реальностью.

Для начала определимся с терминами «искусственный интеллект», «машинное обучение», «нейросеть», которые на сегодняшний день скорее больше мифологизированы, чем следовало бы. Нейронная сеть – это по сути структура объединенных нейронов, прямой ее аналог — это человеческий мозг. Машинное обучение – это процесс научения нейронной сети тем или иным «навыкам», это процесс поиска зависимости между исходными данными и результатом. Искусственный интеллект (AI) — это уже обученная нейронная сеть, или их комплекс. Обучение AI для складских задач ничем не отличается от стандартного – в нейросеть загружаются любые параметры, которые необходимо обрабатывать (для визуализации брака это могут быть, например, фото смятых коробок). Для комплексного решения в промышленном масштабе на базе AI таких параметров понадобятся сотни – касающиеся характеристик процесса, сотрудников, товара, процедур и т.д.

Простейшие «роботы» — это ставшее частью любого мало-мальски автоматизированного склада оборудование: краны-штабелеры, лифтовые стеллажи, «карусели» и т.д. Условно назовем их стационарными роботами – они позволяют автоматизировать отдельные операции, которые человеку просто физически сложно и долго выполнять.

Следующий этап – это так называемая техника AGV, то есть «роботы движущиеся»: всевозможные роботокары, управляемые тележки, автоматизированные погрузчики. Примеры – известные изделия Amazon Robotics или Toru Cube от Magazino.

Более продвинутую версию предлагает компания Symbotic – это роботизированная система склада, где людей почти полностью вытеснили роботы. Правда, для того чтобы технологией воспользоваться, склад придется полностью переделать. Обойдется сама система в сумму от $40 млн до $80 млн. Опять же, речь идет об автоматизированном или автоматическом складе, но без внедрения технологий искусственного интеллекта.

Отдельно стоящее решение, касающееся логистики? крайне коллатерально, но интересно иллюстрирующее проблемы с антропоморфными манипуляторами для складов — это робот Atlas компании Boston Dynamics, публично показанный в прошлом году. Попытки машины поднять коробку крайне удачны, даже в условиях помех со стороны человека, но даже на видео очевидно, что «руки» робота снабжены специальными пластинами, и назвать движения «антропоморфными» сложно.

Далее решения начинают переходить, условно говоря, «от железа к софту», когда задачи автоматизации решаются посредством специализированного программного обеспечения. Начальный этап автоматизации на базе ПО – внедрение WMS системы (Warehouse Management System, системы управления складом) – уже хорошо известен и активно используется всеми игроками рынка – от мини-складов до гигантских распределительных центров. Однако предел, на котором любая WMS система способна сократить издержки и повысить производительность склада, уже перейден, и остро ощущается необходимость нового качественного скачка. Революцию в эту область способны привнести технологии искусственного интеллекта на базе специально обученных искусственных нейронных сетей.

Несмотря на то что логистика в последние годы активно привлекает внимание большинства прогрессивных компаний, являясь одним из главных участников проектов по повышению качества, внедрение современных технологий (таких, как роботы и искусственный интеллект) в этой сфере стоит на одном из последних мест в мире. То, что ситуация должна в ближайшие годы в корне изменится, очевидно. Тотальная глобализация рынков, объединение технологий вокруг потребностей единичного потребителя, стремительный взлет e-commerce, и – как следствие – рост количества номенклатурных позиций и изменение структуры распределительных центров в сторону увеличения числа операций создают благоприятные условия для инвестиций.

Первым и единственным решением для оптимизации складских операций на базе нейросетей пока является проект, реализованный сетью магазинов Zalando (на базе решений компании Nvidia). Технологии AI учат находить оптимальные маршруты для работников склада и решать один из частных случаев задачи коммивояжера. Для решения проблемы управления складом была обучена нейронная сеть, которая оценивает кратчайший для работника маршрут на складе, фактически имплементируя логику покупателя в супермаркете. Скорость работника повышается вследствие решения «проблемы полной тележки» — когда «тележка» становится слишком тяжелой и просто бросается в проходе, а товар приносится в нее с удаленных рядов и полок. Работнику начали выдавать задания на оптимальное количество товара, вводя промежуточные списки, тем самым рациональнее используя труд работника и повышая общую скорость работы на складе.

В России сегодня решений в складской логистике на базе нейронных сетей просто нет. Мы экспериментируем с биотелеметрией, визуальным распознаванием бракованных упаковок, выявлением косвенно влияющих на KPI факторов.

Биотелеметрия – технология, реализованная на базе фитнес-браслетов, которая позволяет распределять нагрузки на сотрудников склада равномерно, в зависимости от состояния здоровья человека здесь и сейчас. Постепенно повышая нагрузки (как и в занятиях спортом), работник склада начинает выполнять больше действий, соответственно повышается производительность склада. Мы подсчитали, что даже на небольшом складе с 20 работниками, экономия при внедрении может достигать 1 млн рублей в год.

Технологию визуального распознавания бракованных упаковок мы запустили, обучив нейросеть распознавать некондиционные групповые и транспортные упаковки. Это важно при приемке товара на склад, когда оператор службы контроля качества может просто не заметить брака упаковки и принять на склад «битый» товар. Нейросеть идентифицирует замятия и порчу, и даст оператору сигнал перепроверить конкретную единицу товара.

Очень интересной задачей было выявление факторов, косвенно влияющих на KPI. Ключевые индикаторы эффективности используются практически везде, и наиболее часто используемым инструментом определения того, что же именно повлияло на рост или падение показателя, является каскадный анализ с детализацией выборки новыми измерениями в популярных BI-подсистемах. Мы же решили собирать данные не постфактум, а в процессе работы, обрабатывая данные при помощи AI, благодаря чему можно быстро определить «виновников» изменения показателя в лучшую или худшую сторону, выявить степень влияния и предпринять своевременные действия для разрешения ситуации. Такими косвенными факторами могут выступить человеческий фактор (ошибки, перегруженность работника, небольшой опыт сотрудника) или неисправность оборудования.

Следующим шагом стала для нас задача клиента распознавать брак при ручной сборке сложных механизмов, основываясь на оцифровке движений сборщика, – но это решение сегодня адаптировано для промышленности, и пока на складе мы для него поля применения на нашли.

Занимаясь разработкой подобных решений на базе глубинного обучения нейронных сетей, мы пришли к тому, что для склада сегодня необходима глобальная система управления складом с применением искусственного интеллекта. Любой отраслевой прорыв в будущем хорошо коррелирует с использованием возможностей AI – как надотраслевого консалтинга. Искусственный интеллект (как независимый консалтинг) может серьезно переформатировать любой рынок, дав игрокам равные возможности и как следствие фактически равную конкуренцию.

На сегодняшний день такие проекты пока не реализованы ни в одной из отраслей, но подвижки в направлении существенны. Пример – когда целые департаменты в компаниях заменяются AI –колл-центры, юридические службы, первичный прием врача. Надотраслевой консалтинг – это следующий шаг в переходе к управлению с помощью искусственного интеллекта отдельными отраслями.

Нейросеть может обучаться на огромном массиве данных, полученных из компаний одного сектора и со временем научается строить закономерности в процессах, делать выводы и подсказывать решения в кризисных ситуациях или предсказывать их появление, базируясь на накопленном опыте. Возьмем, к примеру, энергетическое машиностроение. Есть типовые производственные задачи и процессы, есть сходное оборудование, чертежи и схемы, логистика и специфика доставки, поддержки, ТО. Ситуация, в которой одно предприятие нашло решение, может стать хорошим примером для другого завода, подсказать какие последствия от принимаемых мер можно ожидать, где могут возникнуть убытки и т.д. При этом все данные, загруженные в систему, защищены и не могут быть переданы, но на их базе система учится оказывать консалтинговые услуги, просто холодно сопоставляя данные, не допуская ошибки в просчетах.

Однако препятствий сегодня больше, чем возможностей. Во-первых, поставщики таких решений сегодня не только не сформировали рынок, но их пока ничтожно мало и они пока работают над будущими проектами. Отдаленный пример – это расшаривание фреймворков, когда есть понимание, что развивать отрасль даже самые сильные игроки не могут в одиночку и они делятся знаниями и инструментами.

Во-вторых, есть «региональные» проблемы. Для Запада тормозом процесса перехода к AI-консалтингу является практика патентования, когда любое решение патентуется лидерами рынка. Таким образом, рынок крайне монополизирован и развить сеть операторов решений фактически невозможно. Для России до сих пор актуальна проблема «халифа на час» — когда долгосрочное планирование осуществляют единицы на рынке, а вкладывать немалое время и немалые деньги в долгосрочные проекты никто не хочет, потому что не уверен, что останется на рынке еще хотя бы несколько лет. «Научить» отраслевой AI на скудных данных от 3-4 игроков невозможно, или же уровень предсказаний будет крайне низким.

Попытаемся подвести черту и все же объяснить, почему склад без людей сегодня никому не нужен. Сейчас сложилась промежуточная ситуация, когда технологии уже активно отвоевывают у людей различные ниши применения, но пока настолько дороги и зачастую недоделаны, что самым оптимальным вариантом становится возможность совместить труд человека, «облагородив» его с помощью ИТ, помочь работнику быть быстрее, эффективнее, точнее.

Россия > Транспорт. СМИ, ИТ > forbes.ru, 20 апреля 2017 > № 2146729 Дмитрий Блинов


Нашли ошибку? Выделите фрагмент и нажмите Ctrl+Enter